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Ring strain preclude®;q, symmetry for the parent [10]-
annulene 1).2 The considerable XPelectron aromaticity ol
is overwhelmed by the energy required to deform the CCC
angles to 144 We now describe strategies which take
advantage of strain to overcome the planarity problem in simple
all-cisderivatives ofl. Ourab initio explorations have located
and characterized several promising planar 10-membered-ring
system2—5 (Scheme 1). Not only the theoretical structures
and energies but also the computed magnetic properties
demonstrate the considerable aromaticity in these “next higher”
analogs of benzene.

Sworsk? and Sondheimérdiscussed the hypothetical 1,6-
didehydro[10]annulene2] as an attractive conjugated 10-
membered-ring candidaf®. Sondheimer describe@ as a
“substance formally derived from benzene by elongating two
opposite bonds by the introduction of acetylene groupings”. He
favored aDz, (2), rather than a classical, KeKukgructure
formulation Qa, Cy,). The synthesis o2 has been achieved
recently**¢ “The IH NMR chemical shifts show clear evidence
of a diamagnetic ring current, supporting the notion that
[compound?] is an ‘aromatic’ compound...#* Unfortunately,

2 cyclizes rapidly at temperatures above®’@ We now report
the structure oR, and characteriz8—5, computationally.
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Scheme 1. Planarall-cig10]JAnnulene Derivatived—5? as
Well as Perfluorocyclobutano-Annulated Planar
Cyclooctatetraené and Vogel's 1 6-Methano[10]annu|eﬂe
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Figure 1. Bond lengths and bond angles for 1,6-didehydro[10]annulene
2 (D2n) and 1,6-biscyclopropa[10]annuleB€D,,) at Becke3LYP/DZd.

planar minima withtDs, symmetry (4-fold perfluorocyclobutano
annulation results in a stable, planar cyclooctatetr&@iie

The most common criteria of aromaticity are structure and
energy® but the current ability to compute the diamagnetic

While the angle strain i is negligible, the “triple bonds” susceptibility enhancement and the magnetic anisotropy facilitate
have several undesirable features. They are prone to sidetheir application as indicators for aromaticityConsequently,

reactions, do not conjugate well, anddmesult in unfavorable ~ We have investigated the structures, energies, and magnetic
in-plane transannular p-orbital overfagpat causes a deviation
(8°) of the acetylenic CCC angles from 18(Figure 1).

These disadvantages can be overcome if cyclopropenes,
instead of acetylene “spacers”, are used for the benzene!
elongation. The HEC bond angle in cyclopropene (ca. p1
is not far from the 14%in 1. Indeed, we find that the simple
[10]annulene derivativ8 prefers a planar geometry. While the
double bonds might also adopt the Kekaleclodecapentaene
form (3a@), the Dy, structure 8, Figure 1) is the only energy
minimum.

The design of our other candidatdsandb, is apparent from
the foregoing. The HE&C grouping in cyclobutene also is
“splayed out” to 134. Consequently, if five cyclopropene or
cyclobutene rings are incorporated, the CCC angle strain in the
[LO0]annulene ring is reduced addand5 are computed to be
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properties of compound2—5 to probe their aromaticity.
Density functional theory (Becke3LYP/DZd) as implemented
in Gaussian94 was employed for full geometry optimizations
and frequency calculation®€5 are minima, see supporting
information)® We used Huzinaga’s double¢DZ) basis set in
Dunning’s contraction appended with a set of five d polarization
functions ¢ = 0.75, DZd)? While MP2 tends to overestimate
and HF underestimates aromatic stabilizalf®bFT gives more
satisfactory resultst The magnetic properties were computed
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with a DZ basis set using Kutzelnigg's IGLO progr&nand Table 1. Calculated Total Magnetic Susceptibilitigot ppm

with GIAO-SCF/6-31G* using Gaussian94. CQ(S}I),t F}““KISOIFIOPIGSI)&adms Pp&ﬂ qusc)h EXalté}th?t\(, (FI)\IF)IrCr:]S(:)gS'z'tI’I;T i
Both 2 and 3 have Da-symmetry minima. Except for the ~ @N¢ th€ INucleus Independent Lnemical Snitts ) at the Ring

g AT . - Centers (ppm), and the Aromatic Stabilization Energies (ASE,

triple” bonds in2 (1.245 A) and the three-ring CC bonds3n kcal/mol) of 1-5, as Well as the Benzene Values for Comparison

(1.367 A), all CC lengths are between 1.378 and 1.410 A, close

to the CC bond length of 1.40 A in benzene. Not only the v 2 3 4 5  benzene
geometrical but also the energetic criteria of aromaticity are met. y,@ —182.6 —163.7 —197.3 —216.1 —283.0 —68.1
The aromatic stabilization energies (ASE) correspond to the Xams —2159 -1715 —207.2 —199.4 -1618 —62.9
energy lowerings defined by homodesmotic reactions involving A —80.1 -527 -644 -381 -610 -—134
conjugated polyenes (eqs-4). To compute the strain -5, oLit® -189 -315 -241 -163 -142 66

the polyene reference species also were computed at BeckeaLYP[\ICS"  —159 -173 -149 -108 -150 -11.5
I . - ASE* 26.1 7.4 13.9 185 23.0 217

Dzd with fixed angles corresponding to those in struct@es

(all the other parameters were optimized). The strain-corrected *At  IGLO/DZ//Becke3LYP/DZd." At GIAO-SCF/6-31G*//

ASESs derived in this manner are 7.4 kcal/mol fofeq 1) and Becke3LYP/DZd*< At Becke3LYP/DZd.9 Using the MP2(fc)/Dzd

13.9 kcal/mol for3 (eq 2). geometry.® References 7c and 13.
The magnetic susceptibility exaltationsf5 (Table 1) are
o _ almost as large as that of the strongly aromatic hypothetical
%‘ // </_\\> <ﬂ==~_/_ >+ ) <\/\/\> W parent compound (computed inD1g, Symmetry) and exceed
—% RN D SN R N the A’s for bicyclic 10 electron systems: naphthalere28.2

ppm cgs) and Vogel's 1,6-methano[10]annulen&t§.0 ppm
cgs,7).1> The susceptibility anisotropies @f-5 (Table 1) also

SPS - //A—\\ AL ), 3 [ S @ are comparable to that df?2
\\%\7%// NG - NN Chemical shifts can be probed, e.g., by computing the
. chemical shifts of LT placed on the center df—5.16 ¢ Li*

are—18.9 ppm (), —31.5 ppm @), —24.1 ppm 8), —16.3 ppm
The aromaticities ot and of5 are indicated by the 10-ring  (4), and—14.2 ppm ). Such high-field shifts of nuclei in the
CC bond lengths: 1.358 and 1.379 Adras well as 1.389 and ~ middle of ring systems are typical for aromatic systémdhe
1.425 A in 5 (Scheme 1). Both of the lengths i are nucleus independent chemical shifts (NICS) also can be
remarkably short, and their alternation is small. The aromaticity evaluated by computing the magnetic shieldings at points in
of 4 and5 also is manifested energetically. The strain-corrected the center of thel—5 rings (Table 1). Together with the
ASEs are 18.5 kcal/mol fod4 and 23.0 kcal/mol fos. To diamagnetic susceptibility exaltation and the magnetic anisot-
compensate for the strain, the cyclobutene and cyclopropeneropy, these data show that-5 fulfill all the magnetic criteria
reference molecules used to evaluate the ASE (egs 3 and 4)of aromaticity.
were constrained to have the 24@—C=angles as i and5. Although2 is very unstablé® 3, 4, and5 are highly attractive
candidates for experimental investigation. The synthesis of
perfluorotetracyclobutacyclooctatetraegfe stable planar mol-
ecule® shows that systems likkand5 should be experimentally
Q) accessible. Unliké and5, 3 offers CH positions for studying
the aromatic substitution chemistry.
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The aromaticity oR—5is also revealed by the large exaltation
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